Cosmos

 
Astro@Home | MilkyWay| SDSS| Teorías | Astro | Tesis| Solar | Hubble | Sondas | AAAA | OAMR | OALP| OAC | OAFA| AEA| CODE | LIADA | OPA| OAMP| CASLEO| AAA| Astronomía| Cosmos | Universo| Espacio| Tiempo| Galaxias | Pulsars| Quasars| | | | WorldCommunityGrid | | | Ibercivis | | | LHC| | | | Info01 | Info02 | Info03 | Info04 | Info05| Info06 | Info07 | Info08 | Info09 | Info10 | Info11| Info12 | Info13 | Info14 | Info15| Info16 | Info17 | Info18 | Info19| Info20 | ISS Exp| ISS Lab| ISS Obs| | Asteroids| NASA| ESA| DeepSpace| PlanetQuest| SpaceStation| | Noticias| |
 
Cosmos
 
 
Teoría de Mundos Múltiples (Hugh Everett)


Esta teoría enuncia la existencia de una Interpretación de Muchos Mundos (IMM) ó historias múltiples según la física cuántica, en donde pequeñas diferencias determinan un nuevo universo; fue la Tesis de Everett de 1956.

El Principio de Simultaneidad Dimensional, o principio de Tesolin, de 1975, establece que "Dos o más objetos físicos, realidades, percepciones y objetos no-físicos pueden coexistir en el mismo espacio-tiempo".

Este principio sustenta tanto la teoría IMM, como la teoría del Multiverso.

Imagen
 
Teoría del Multiverso (Max Tegmark)


Multiverso Nivel I: La infinitud del Universo implica la existencia de infinitos volúmenes de Hubble.

Multiverso Nivel II: En la inflación cósmica el Multiverso se expande, pero algunas regiones forman burbujas diferenciadas.

Multiverso Nivel III: Los universos múltiples existen acorde a la probabilidad indicada por la Teoría cuántica.

Multiverso Nivel IV: El Multiverso de este nivel considera que todas las estructuras matemáticas posibles también existen físicamente.

Imagen
 
 
Cluster de Galaxias y Radiogalaxias


Las radiogalaxias y sus parientes, quásares radio-intensos y blazars, son tipos de galaxia activa muy luminosas en frecuencias de radio (de hasta 1038 W entre 10 MHz y 100 GHz). La emisión de radio es debida a la radiación sincrotrón.
La estructura observada en la emisión de radio es determinada por la interacción entre chorros de materia gemelos y un medio externo, modificado por los efectos de la dirección relativista. Las galaxias activas radio-intensas son interesantes no solo por sí mismas, sino también porque pueden ser detectadas a grandes distancias, convirtiéndolas en herramientas valiosas para la cosmología observacional. Recientemente se ha utilizado los efectos de estos objetos en el medio intergaláctico, particularmente en las agrupaciones galácticas.

Las radiogalaxias, y en menor medida, los quásares radio-intensos, muestran una amplia gama de estructuras en los mapas de radio. La estructura a gran escala más común son los denominados lóbulos: son estructuras dobles, aproximadamente elipsoidales y a veces simétricas situadas en cada lado del núcleo activo. Una significante minoría de fuentes de luminosidad baja muestran estructuras conocidas como columnas, que son más alargadas.

Algunas radiogalaxias muestran uno o dos rasgos alargados conocidos como chorros, uno de los más conocido se encuentra en la Galaxia elíptica M87 del Cúmulo de Virgo, que salen directamente del núcleo hacia los lóbulos. Desde los años 19703 4 el modelo más aceptado es que los lóbulos o columnas están alimentadas por haces de partículas de alta energía y el campo magnético que aparece cerca del núcleo activo. Se cree que los chorros son las manifestaciones visibles de tales haces y, a menudo, se utiliza el término chorro o jet tanto para el rasgo visible como para el flujo subyacente.

Las radiogalaxias se encuentran de manera casi universal hospedándose en galaxias elípticas. Algunas galaxias Seyfert muestran pequeños chorros débiles, pero sin la suficiente luminosidad para ser clasificados como radio-intensos. Con la información disponible sobre las galaxias anfitrionas de qúasares radio-intensos y blazars, se sugiere que también se hospedan en galaxias elípticas.

Hay varias posibles razones por esta preferencias a las galaxias elípticas. Las galaxias elípticas contienen generalmente la mayoría de los agujeros negros masivos y por tanto son capaces de abastecer a la mayoría de las galaxias activas luminosas (véase luminosidad de Eddington). Otra razón es que las galaxias elípticas existe entornos ricos, proporcionando medio intergaláctico en grandes cantidades para confinar a la fuente de radio. También puede ser que las grandes cantidades de gas frío en las galaxias espirales de algún modo interrumpan o eliminen la formación de un chorro. Hasta la fecha no hay una única explicación convincente para las observaciones.


Uso de las radiogalaxias

Fuentes lejanas:

Las radiogalaxias y los quásares radio-intensos han sido utilizados ampliamente, en particular en las décadas de 1980 y 1990, para buscar galaxias lejanas, mediante la selección basada en el espectro de radio y luego observando la galaxia anfitriona era posible buscar objetos con un corrimiento al rojo alto por un coste de tiempo modesto. El problema de este método es que los anfitriones de galaxias activas puede no ser galaxias típicas en su corrimiento al rojo. De forma similar, las radiogalaxias se han usado para buscar cúmulos de emisión de rayos X, pero ahora se prefieren métodos de selección imparciales.

Reglas estándares:

Se ha intentado utilizar las radiogalaxias como reglas estándares para determinar parámetros cosmológicos. Este método está cargado de problemas debido a que el tamaño de la radiogalaxia depende tanto de su edad como de su entorno. Cuando un modelo de fuente de radio es utilizado, los métodos basados en radiogalaxias puede dar buenos resultados con otras observaciones cosmológicas.

Efectos en el entorno:

Si una fuente de radio se expande de forma supersónica o no, debe realizar un trabajo contra el medio externo en la expansión, y por tanto transfiere energía para calentar y disipar el plasma externo. La energía mínima almacenada en los lóbulos de una fuente de radio de intensidad alta puede ser de 1053 J, El límite inferior en el trabajo realizado en el medio externo por tal fuente es varias veces esta cantidad. El interés actual de las fuentes de radio se centra en el efecto que deben tener en los centros de cúmulos. También es interesante el efecto de la estructura durante el tiempo cosmológico, pues puede proporcionar un mecanismo de retroalimentación para retrasar la formación de objetos más masivos.

Abajo en la fotografía se puede apreciar un Cluster de Galaxias con galaxia central y emisión. Se observa la existencia de los llamados radiolóbulos que miden miles de años-luz.

Imagen


 
Cluster de Galaxias y Materia Oscura


Una agrupación galáctica es una superestructura cósmica formada por miles de galaxias. La materia bariónica del universo visible se distribuye a lo largo de estructuras colosales que reciben el nombre de filamentos o muros según su forma, quedando gran cantidad de regiones huecas, llamadas vacíos, sin apenas materia luminosa.

Dichas estructuras están formadas por miles de agregados de galaxias de diferentes formas y tamaños. Estas colosales macroestructuras son las más recientes en la historia del universo.

Dichas estructuras se mantienen cohesionadas por la materia oscura y la fuerza de la gravedad,pero la expansión acelerada del cosmos podría acabar imponiéndose (si no lo ha hecho ya) y detener la acumulación de materia. Las distintas agrupaciones de galaxias que conforman el universo se llaman grupos, cúmulos y supercúmulos según su tamaño y el número de galaxias que contienen.

Van desde pequeños grupos con una decena de galaxias hasta grandes cúmulos de miles de galaxias. Los supercúmulos son estructuras más complejas formadas por centenares o miles de cúmulos galácticos interaccionando gravitatoriamente entre sí.

En astrofísica y cosmología física se denomina materia oscura a la hipotética materia que no emite suficiente radiación electromagnética para ser detectada con los medios técnicos actuales, pero cuya existencia se puede deducir a partir de los efectos gravitacionales que causa en la materia visible, tales como las estrellas o las galaxias, así como en las anisotropías del fondo cósmico de microondas presente en el universo.

De acuerdo con las observaciones actuales, año 2010, de estructuras mayores que una galaxia, así como la cosmología del Big Bang, la materia oscura constituye del orden del 21% de la masa-energía del Universo observable y la energía oscura el 70%.

La materia oscura fue propuesta por Fritz Zwicky en 1933 ante la evidencia de una "masa no visible"2 que influía en las velocidades orbitales de las galaxias en los cúmulos. Posteriormente, otras observaciones han indicado la presencia de materia oscura en el universo: estas observaciones incluyen la citada velocidad de rotación de las galaxias, las lentes gravitacionales de los objetos de fondo por los cúmulos de galaxias, tales como el Cúmulo Bala (1E 0657-56) y la distribución de la temperatura del gas caliente en galaxias y cúmulos de galaxias.

La materia oscura también desempeña un papel central en la formación de estructuras y la evolución de galaxias y tiene efectos medibles en la anisotropía de la radiación de fondo de microondas. Todas estas pruebas sugieren que las galaxias, los cúmulos de galaxias y todo el Universo contiene mucha más materia que la que interactúa con la radiación electromagnética: lo restante es llamado "el componente de materia oscura".


El Cúmulo Bala

El Cúmulo Bala (1E 0657-56) consiste de dos cúmulos de galaxias en colisión. Los estudios hechos sobre este cúmulo, presentados en agosto de 2006, constituyen hasta ese momento la mejor evidencia en favor de la existencia de la materia oscura.1 Estrictamente hablando, el nombre de «Cúmulo Bala» se refiere a un pequeño subcúmulo que se aleja de un cúmulo mayor.

Las principales componentes del cúmulo, estrellas, gas y la materia oscura se comportan de forma diferente durante una colisión, de tal forma que es posible estudiar cada una de ellas de manera separada. Las estrellas en las galaxias, observadas en luz visible, no se alteran cuando ocurre una colisión, aunque su movimiento sí se modifica, siendo desacelerado gravitacionalmente. El gas caliente de las dos componentes que chocan y que es observado en rayos X representa la mayor parte de la masa de la materia ordinaria, conocida como materia bariónica. La tercera componente, la materia oscura, se detectó indirectamente por medio del fenómeno conocido como lente gravitacional que afecta a los objetos en el fondo.

En teorías que no toman en cuenta la materia oscura, como la Dinámica newtoniana modificada, se esperaría que la lente gravitacional ocurriera gracias a la materia bariónica como el gas emisor de rayos X. Sin embargo, este fenómeno es más acentuado en dos regiones separadas cerca de las galaxias visibles. Este hecho fortalece la idea de que la mayor parte de la masa en el sistema es materia oscura no afectada por colisiones.

Los resultados más concluyentes fueron inferidos a partir de las observaciones del satélite Chandra en este cúmulo, publicados por Markevitch et al. y Clowe et al., ambos en 2004. Estos autores reportan que el cúmulo experimenta una alta velocidad de fusión, la cual resulta evidente de la distribución espacial del gas caliente emisor de rayos X. El gas se encuentra detrás de los subcúmulos, mientras que el conjunto de materia oscura se encuentra delante del gas.

Abajo se puede observar un Cluster de Galaxias con esfera de materia oscura. Se aprecia que dicha esfera es la que contiene el cluster y le da forma.

Imagen